WATER DROPLET COAGULATION DURING ELECTRICAL DEHYDRATION OF
PETROLEUM

S. M. Burkitbaev, K. V. Kotoyants, UDC 532:66.066.3
N. K. Nadirov, and P. P. Poluektov

A simple analytical model is constructed for coagulation of emulsion droplets,
describing the process of petroleum dehydration by an external electric field.

Some studies of destruction of water—petroleum emulsions by coagulation of droplets have
been based on M, Smolukhovskii's theory of colloid coagulation [1, 2], which necessitates solu-
tion of cumbersome integrodifferential equations. It would appear desirable to introduce
some limitations in the construction of the coagulation model which would achieve full corre-
spondence to the physical formulation of the process being described yet provide sufficient
simplicity in the mathematical solution.,

The goal of the present study is to construct an analytical model of water droplet coagu-
lation in an emulsion of the inverse type, describing the process of petroleum dehydration in
an external electric field.

Let the charged spherical droplets move in a viscous medium within a limited volume under
the action of an electric field, The droplet surface will be assumed stabilized by surface-
active materials, so that in the future the droplets can be considered rigid and nondeforming
[3]. We will divide the droplets into two classes by their size: we distinguish "large"
droplets which do not collide with each other, colliding only with "small" droplets (which
may also collide with each other). This is possible because of the finite particle path
length following from the limited dimensions of the apparatus in question: NESL < 1.

‘The large droplets change their size by absorbing small ones after colliding with them.
Distinguishing this class of large droplets is also desirable from a technological viewpoint,
since it is just such droplets which determine the efficiency of the dehydration process. We
write No(M7) = N(Mz(0), 0), the initial distribution over mass of the large droplets Mz,
N(Mz(t), t), their distribution at some time t. The change in mass of a large droplet is
described by the equation .

Ml min
_i“lg—(tl.: [ dmmi (m) S0 1
0

For droplet motion in an electrical field the velocity is an increasing function of drop-
let size. Given our division of droplets into classes we can assume R >> r (radii of large
and small droplets, respectively), thus vye] is determined by the velocity of motion of large
droplets vz, Thus, for example, if the droplet charge q ~ R® [4], then v7 ~ R, or v = kR,

k = m%e€oE*/9n. We will limit ourselves to comsideration of only this case, although the
model can easily be generalized to any other dependence vy(R).

The question of the capture coefficient is quite complex [5-8}. Capture of small parti-
cles by large ones depends on many factors: viscosity of the medium, ratio of the areas, rela-
tive velocity, droplet charge, etc. Since at present there is insufficient information on the
state of the water—petroleum emulsion, evaluation of the contribution of the various particle
precipitation mechanisms is quite difficult, For simplicity, we will assume the coefficient
of capture of small droplets by large ones to be a comstant value, which with use of the con~-
cepts developed herein for real experimental situations should be considered as a parameter
to be measured beforehand.
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With consideration of the above, Eq. (1) can be written in the form

ﬂ”_l;_(ﬁ = my () anR%kR,

or transforming from radii to masses:
=M (&) BMy (D). (2)

Here B = (3/4p)ak. Multiplying both sides of Eq. (2) by N(Mz, t) and summing over masses of
large droplets, we obtain a differential equation for the net mass of large droplets

aMs (9
dt
My = Ms(l) + mz () = const. (4)

Solving Eq. (3) for My(t), we again use Eq. (4) and obtain yet another differential equation
for determination of Mz (t):

amy ()
t

= BM; ()Mo — Mz (1)), (3)

AMLl) _ g (M, — My (1) My (O)-
dt

The solution of this equation [9].is:
Cl + CZB
Imin G, exp (Moft) + b

where C,, C, are constants, Ci + C§ > 0. For t = 0, M7(0) = Mypin. Using the notation y, =
(C2/C1)B, Yo = const, we finally obtain

My (@)=M exp (M,B1),

14 .
1 -+ yoexp (— MqBt)
The physical meaning of the coefficient y, can easily be established by solution of differen-

tial equation (3): vo = my(0)/Mz(0), i.e., Yo quantitatively determines the ratio of masses
of large and small particles at the moment the process commences.

My (t) = My (0)

(5)

We will now consider the behavior of the distribution function N(Mz, t). Let
1
f (t) — + YO .
1 4 voexp (— Mofit)
At any time t for an arbitrary point M(t) the distribution function can be defined as the
ratio AN(M(t), t)/AMM(t), t). At the initial moment, t = 0, the increment

AM (M (0), 0) = M, (0) — M, (0).

Using Eq. (5), we can write

AM(M (1), 1) = My (t) — My (t) = AM(0) f (¢).
Considering that the number of large droplets in the system remains constant (since they do
not interact with each other), we write

AN (M(0), )
AM (M (0), O)F () . .
The expression AN(M(O0), 0)/MM(M(0), 0) is the initial distribution No(M(0)), M(0) = M(t)f~*.
(t). Transforming to the limit, we find that the change in the large droplet distribution
function over mass with time can be described analytically: _
N (M(®), 1) = No(M () - (0) F ). 6

Thus the distribution function at any time t depends on the initial system droplet distribu-
tion and several physical parameters.

N (M), t) =

Figure 1 shows results of calculatings with Eq. (6) with a time step of unity, assuming
logarithmically normal initial distribution. This distribution was chosen because experimental
data on the disperse emulsion composition can most often be approximated by a logarithmically
normal distribution [10, 11].

Figure 2 shows the time dependence of total large particle mass, which characterizes ef-
ficiency of the dehydration process.
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We will now consider special forms of the distribution.

1. Gaussian (normal) distribution with parameters M, corresponding to mean particle size,

- YRS
and o/M, corresponding to relative dispersion: N,(M)= v/l_ exp(——A4 A4) .
200 o

We apply Eq. (6) to this distribution, i.e. , follow its behavior in time: A/UM,t)::——??LFYT

' ¥V 2nof(t

~1 — Ar\2 M 2 )
exp(_ M1 (1) M) o exp (_M Mf(t)).

4y "V 2nof(t) of (¢)

" Consequently, we again obtain a normal_distribution with parameters: mean size M, = Mf(t) and
relative dispersion of(t)/(Mf(t)) = o/M.

2. In a similar manner, the logarithmically normal distribution also maintains its form,
only the mean size changing:

NM, )=

1 _ (InM— InMJ @t))?
Vo - )

NOTATION

N(Mz), N(m), large and small particle distribution functions; M7, mass of large particles;

My, my, total mass of large and small particles; t, time; I, collision section; a, capture
coefficient; vy, velocity of large particle motion; R, radius; q, droplet charge; p, density
of dispersed phase particles; Mo, total system mass} B, numerical coefficient} y,, constant;
AN, increment to distribution function; AM, change in mass of large droplets; o/M, relative
dispersion of normal distribution; eg4, absolute dielectric permittivity; e, dielectric per-
mittivity of dispersed phase; E, electric field intensity; n, viscosity; N7, number of large
particles; S, area of large droplet; L, large particle path length; M7 pin, minimum mass of
large particle; vrel, velocity of large particles relative to small.
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